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SUMMARY

We present a novel approach for numerical simulation of �uid �ow and sediment transport past evolu-
tionary landforms, with emphasis on sand dunes developing in extreme winds. Time-dependent curvilin-
ear coordinates are employed to fully couple �ow aloft with the developing landform. The conservation
law that de�nes shape of the lower boundary depends on details of local surface stress, thereby favouring
a large eddy simulation of the atmospheric boundary layer. The �ux-form partial di�erential equation
for the interface pro�le—via saltation and sand avalanches—is formulated as an advection–di�usion
equation. The latter facilitates discrete integrations using nonoscillatory algorithms—consistent with the
nonoscillatory forward-in-time solver, based on MPDATA transport methods, employed to simulate the
boundary layer �ow aloft. Theoretical discussions are illustrated with numerical experiments that explore
the interactive evolution of the dune/atmosphere system. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fluid �ows and accompanying cohesionless sediment transport over evolutionary landforms is
a fundamental dynamical mechanism with challenging details. Whenever the landform plays
an active role in determining both the �uid �ow and the sediment motion—e.g. when ero-
sion and sedimentation mould the landform, modifying in turn the �ow aloft—the underlying
dynamics amount to �ows with intricate geometric time-dependent boundary forcing. Among
the variety of active landforms, evolutionary dunes are an archetype of �uid=terrain interaction.
Diagnosis and prediction of dune development and accompanying sand transport is important
for environmental research and engineering, in areas such as the deserti�cation processes,
beach erosion, or conservation of tra�cability in arid regions.
In the research of sand dunes, relatively little work has been devoted to the coupled

dune=�uid system. The two-phase interaction is typically neglected [1–4], or simpli�ed
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1230 P. ORTIZ AND P. K. SMOLARKIEWICZ

adopting a quasi-steady approximation (QSA). The QSA assumes a time scale of �ow vari-
ability much shorter than of the dune evolution, so that the modelled dune evolution depends
parametrically on the boundary layer �ow. For example, numerical simulations of barchan
and transverse dunes [5, 6] employ surface shear stresses provided by a semi-analytic solution
of a steady-state boundary layer model for 3D �ows past �xed hills. Whereas, calculations of
Wippermann and Gross [7] integrate the �ow equations past a frozen landform to a steady
state, and update the boundary pro�le subsequently in the frozen �ow—in the spirit of the
classical Achilles–Turtle iteration.
Although solutions generated with the steady and QSA models capture many qualitative

aspects of dune evolution and shed light on dune dynamics [1, 6], there are outstanding issues
lacking either satisfactory understanding or quanti�cation. Examples include the attainability of
the equilibrium shape of an isolated barchan dune [5, 7], calving barchan dunes [1], estimating
the rates of erosion [5], and details of the genesis and development of barchan dunes [7]. The
fundamental role of the wind velocity �eld in dune evolution, and its oversimpli�cation in
contemporary models are often acknowledged [5, 6, 8–10]. Obviously, the assumption of scale
separation that underlies QSA models cannot be generally valid. For counterexample, consider
dune evolution in extreme winds, an event familiar from the popular literature and cinema.
Moreover, scale analysis is only discriminating when it identi�es processes that cannot be
neglected. Since dune=�uid dynamics is governed by complex nonlinear PDEs, even small-
magnitude terms can have a profound impact on the solution. Consequently, the e�ect of QSA
on the generated solutions remains unclear.
In this work, we adopt a ‘severe wind scenario’, relax the limitations of the quasi-steady

approximation, and fully couple the two phases of the dune=�uid system. We employ a vari-
ant of the nonhydrostatic atmospheric numerical model EULAG—a broadly documented in
the literature high-performance �ow solver based on the MPDATA schemes [11]—that cou-
ples the internal �ow with a lower boundary evolving in response to the sand saltation.
The key feature of the EULAG model is the use of time-dependent curvilinear coordinate
transformation [12–16] that accommodates rapid changes of the boundary shape. Due to the
adopted severe wind scenario, the geometric di�culty of the two-phase coupling is enhanced
by the ubiquity of the turbulence and separating boundary layer. Since a realistic response
of the sediment-transport model depends crucially on the formulation of the boundary stress,
we employ a large-eddy-simulation (LES) approach with the Smagorinsky-type subgrid-scale
turbulence model [17].
The locus of the solid=�uid interface is standardly described by a di�erential conservation

law relating the height of the interface to the divergence of sediment �uxes [5, 7, 18]. Fol-
lowing the MPDATA approach,‡ we cast the standard equation in an advection–di�usion PDE
form, to improve the solution accuracy while simplifying the computational procedures. In
particular, the saltation �uxes—assumed dominant for the landform development—are writ-
ten as convective �uxes, with the e�ective velocity representing the transport rate averaged
over the local thickness of the sediment stratum. In contrast, the sand avalanches—acting
as natural slope limiter—are represented as di�usive �uxes with an anisotropic, inhomoge-
neous di�usion coe�cient depending critically on the local slope, cf. Reference [19]. With the

‡In essence, MPDATA relies on transforming PDEs into forms more convenient for computing; cf. Reference [11]
and references therein.
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SAND DUNE EVOLUTION IN SEVERE WINDS 1231

rearranged sediment conservation law, the nonoscillatory forward-in-time numerical technol-
ogy of EULAG improves the accuracy, stability, and robustness of earlier approximations.
We verify the theoretical developments by canonical experiments addressing the dynamics of
barchan dunes, with a solid ground or erodible bed underneath the initial sand pile.
The remainder of the paper is organized as follows. In the following section, the theoretical

formulation of our two-phase dune=�uid dynamics model is outlined. The numerical approxi-
mations to PDEs governing both phases of the model are presented in Section 3. Design of
numerical experiments and the corresponding results are discussed in Section 4. Remarks in
Section 5 conclude the paper.

2. THEORETICAL FORMULATION

2.1. Fluid model

The nonhydrostatic anelastic model EULAG used in this study has been broadly documented
in the literature; see References [13–15] for recent developments and reviews. Here, we con-
sider shallow �ows of a thermally homogeneous planetary boundary layer, and adopt the
classical incompressible Boussinesq approximation in the governing �uid equations. Conse-
quently, we invoke only a small portion of the model’s capabilities, thereby simplifying the
presentation as well as computational procedures. The scope of this paper justi�es a concise,
operator-like symbolic description of the governing equations. Wherever the operator symbols
refer to coe�cient matrices, they merely indicate matrix operations but do not follow the
formalism of matrix algebra to the letter—for a thorough mathematical expositions refer to
References [13–16].
To address a broad class of �ows in a variety of domains, the governing equations are

formulated (and solved) in transformed time-dependent curvilinear coordinates

(�t; �x)≡ (t;F(t;x)) (1)

with assumptions that the coordinates (t;x) of the physical domain are orthogonal and station-
ary—in particular, Cartesian in this paper—and the transformed horizontal coordinates ( �x; �y)
are independent of the vertical coordinate z. Given the transformation in (1), the incompress-
ible Boussinesq equations for neutrally strati�ed �ow can be compactly written as follows:

�∇ • (�∗ �vs)=0 (2)

dv
d�t
=− G̃ �∇�′ +D (3)

where, because of the coordinate transformation, the physical and geometrical aspects are
intertwined. Insofar as the physics is concerned: v denotes the physical velocity vector;
� and � denote density and a density-normalized pressure, respectively; D symbolizes viscous
dissipation of momentum via divergence of turbulent stresses. Primes denote deviations from
the static ambient state, characterized by uniform density �o.
The geometry of the coordinates in (1) enters the governing equations as follows: in the

mass continuity equation (2), �∗ ≡�o �G with �G denoting the Jacobian of the transformation;
whereas in the momentum equation (3), G̃∼ (@ �x=@x) symbolizes the renormalized Jacobi
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1232 P. ORTIZ AND P. K. SMOLARKIEWICZ

matrix of the transformation coe�cients; �∇ • ≡ @=@ �x•, and the total derivative is given by
d=d�t= @=@�t + �v∗ • �∇, where �v∗ ≡ d �x=d�t ≡ �̇x is the contravariant velocity. Appearing in the
continuity equation (2) is the solenoidal velocity

�vs ≡ �v∗ − @ �x
@t

(4)

that follows, see Reference [20], from the generic (tensor invariant) form of incompressible
continuity equation

�G−1
(
@�∗

@�t
+ �∇ • (�∗ �v∗)

)
≡ 0 (5)

The transformation

�vs = G̃Tv (6)

relates the solenoidal and physical velocities directly. For further details of the metric and
transformation tensors as well as formulating viscous and dissipative terms in the governing
equations, the interested reader is referred to Reference [15] and the references therein.
Following Reference [14], the general dependence of �z on (x; y; z; t) in (1) collapses into

a similarity transformation

�z=C(�)

�= �(x; y; z; t) :=H0
z − zs(x; y; t)

H (x; y; t)− zs(x; y; t)

(7)

with the inverse relationship

z=
�
H0
(H − zs) + zs

�=C−1( �z)

(8)

Here H and zs are the upper and lower surface elevations, respectively, H0 denotes the
vertical extend of the transformed model domain, and the function C conveniently admits
a class of vertically stretched coordinates. The transformation in (7) has the computational
advantage of separability into one- and two-dimensional �elds. In particular, the Jacobian of
the transformation is given as

�G=
(
dC
d�

@�
@z

)−1 (
@ �x
@x

@ �y
@y

− @ �x
@y

@ �y
@x

)−1

≡
(
dC
d�

)−1
�G0 �Gxy (9)
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SAND DUNE EVOLUTION IN SEVERE WINDS 1233

with

�G0 ≡
(
@�
@z

)−1
=

H (x; y; t)− zs(x; y; t)
H0

(10)

Throughout this paper, �x= x, �y=y and �= �z; thereby employing the identity transforma-
tion in the horizontal (viz. �Gxy ≡ 1). Furthermore, the upper boundary is stationary and �at
(viz. H ≡H0), and there is no vertical stretching of the lower-boundary-�tted coordinate �z
(viz. dC=d�≡ 1). However, since all reported mathematical and numerical developments
accommodate (1) and (7) in their full generality, we retain the consistent notation, for future
reference.
Our mathematical framework enables the speci�cation of the lower surface by arbitrary

means (either approximated or exactly prescribed). Here, we drive the time-dependent trans-
formation (7) by the solution of the sediment motion model—discussed next—such that zs ≡ h,
where h is the solid=�uid interface pro�le.

2.2. Sediment motion

The evolution of the solid=�uid interface is governed by the mass conservation law

�s
@h
@t
+∇H • q=0 (11)

where �s =�m(1 − �) is the bulk density of the sediment with �m and � denoting, respec-
tively, the density of the grain material and the porosity (volume of voids=total volume); ∇H

symbolizes the horizontal nabla operator of the physical space; and q is a vertically integrated
sediment mass �ux.
In usual aeolian transport, where sand is the prevailing fraction of the grain mixture, the

sediment �ux q is ascribed to the saltation. Saltation includes particle-size scale processes such
as the direct momentum transfer from the �uid to the grains (drag), aerodynamic entrainment,
and ejection due to grain collisions (splash) [18]. The saltation �ux qS follows the Bagnold
law [21] of the saturation condition,§ adjusted to account for the critical dependence of the
saltation transport on the friction velocity and variable �ow direction [7, 23]. In the resulting
formula

qS =C
�
g
u∗‖u∗‖2max

(
0; 1− u�

‖u∗‖
)

(12)

we adopt the following notation: C is an empirical coe�cient depending (to a �rst approxi-
mation [24]) upon the square root of normalized grain size; � is the density of the air; g= |g|,
where g is the acceleration of gravity; u∗ ≡ u∗v‖v‖−1, where the friction velocity u∗=

√
�−1�w;

while �w and u� denote the wall shear stress and threshold value of u∗, respectively.
In general, the threshold friction velocity u� depends on the landform slope [25]. In 3D,

however, local �ow does not necessarily align with the maximum slope. In order to correct
for the misalignment, we have developed a generalized formula for u� (see Appendix A).

§The saturation condition is de�ned by the equilibrated momentum transfer from the air to the grains; for alternative
prognostic constitutive modelling of saltation, that relaxes the saturation assumption, see References [18, 22].
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Figure 1. Local sand avalanches beneath the brink of a dune.

Following Reference [26], where shear stresses in curved trapezoidal channels were addressed,
we assumed the equality of tractive force and friction, and drag coe�cient independent of the
slope magnitude. The resulting formula relates the actual threshold velocity to the threshold
friction velocity u�0 for a �at bed,¶

u�=

√√√√ sin �
tan �

cos �+

√
sin2 �
tan2 �

(cos2 � − 1) + cos2 � u�0 (13)

where � is the local slope angle, � is the angle of friction, and � is the angle between local
wind and slope. For the special case of �=0, (13) reduces to Equation (5) in Reference [25].
The saltation �ux alone is insu�cient for representing realistic dune development. Similar

to pile surface dynamics [19], sand dunes are subject to self-organized criticality [28, 29],
where upon reaching the critical slope (sC ≡ tan �=0:625 for sand) local grain avalanches
discharge particle steepest descent to stabilize the slope. For illustration, we show in Figure 1
the photograph we took in the Great Sand Dunes National Park, Colorado. It conveys par-
ticularly well the scale disparity of the sand avalanches and dunes; cf. References [7, 24] for
discussions. In our formulation of the coupled �ow=sediment-transport problem, accounting
for the avalanches is essential, since otherwise unbounded steepening of local slopes leads to
a singularity of the transformation in (7).

¶Values of u�0 for various soil particles can be found in Reference [27].

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1229–1246



SAND DUNE EVOLUTION IN SEVERE WINDS 1235

Following Reference [19], we represent the avalanche transport in the form of di�usion
�uxes, with an anisotropic, inhomogeneous di�usion coe�cient depending critically on the
local slope

qA = − �sK∇Hh (14)

Here K(x; t)| �z= 0 is the associated di�usion coe�cient, de�ned as

K :=
�2

�
1 + sgn(‖∇Hh‖ − sC)

2
(15)

where � and � denote the characteristic length and time scales (yet to be speci�ed).
The total �ux entering the mass conservation law (11) is a sum of qS and qA. To aid in

understanding of dune propagation as well as to facilitate the solution procedures, we cast (11)
in the form of an advection–di�usion equation

@h
@t
+∇H •Uh=∇H • K∇Hh (16)

with the advective velocity U de�ned as

U :=
qS
�sh

(17)

Formally, (16) is equivalent to (11) for any h= h′(x; t) + const, since the singularity of U,
as h ↘ 0, is removable. In order to give U a unique physical interpretation, we de�ne h with
respect to horizontal reference level at the upper limit of nonerodible substrate. Hence, U is
an average velocity over a potentially mobilized sand layer.
Mathematically, the advection di�usion equation (16) can be viewed as a special case of

the equations of motion—here, (2) and (3)—discussed thoroughly in References [13–15].
Consequently, the mathematical apparatus developed therein applies readily, resulting in the
transformed form of (16)

@ �Gxyh
@�t

+ �∇H • ( �Gxy �U∗h)= �∇H • (K �Gxy �a �∇Hh) (18)

where �U∗ is the e�ective contravariant velocity of the transformed space (e.g. a composition
of the horizontal counterparts of the transformations (6) and (4)), and �a symbolizes the
conjugate metric tensor of the transformed space, cf. Section 3.3 in Reference [15].

3. NUMERICAL MODEL

3.1. Flow solver

The incompressible Boussinesq equations (2) and (3) are solved numerically using a second-
order-accurate nonoscillatory forward-in-time (NFT) approach, broadly documented in the
literature (see Reference [11, Section 4] for the principles of the formulation and Reference
[30] for a succinct review). Below we comment brie�y on the essential aspects of the nu-
merical solution procedure while referring the reader to earlier works for further details.
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Given (5), the evolution equation (3) for each velocity component can be written as an
Eulerian conservation law

@�∗ 
@�t

+ �∇ • ( �V∗ )=�∗R (19)

where  symbolizes components of v, �V∗ ≡�∗ �v∗, and R denotes the associated rhs. An NFT
algorithm employed to integrate (19) to second-order accuracy can be concisely written as

 n+1
i =

�∗n

�∗n+1Ai( ̃ ; �V∗n+1=2; 	t) + 0:5	tRn+1
i (20)

where  n+1
i is the solution sought at the grid point (�t n+1; �xi),  ̃ ≡  n + 0:5	tRn, and A

denotes a two-time-level nonoscillatory �ux-form transport operator [31]. Here, we use for
A a fully second-order-accurate multidimensional MPDATA advection scheme [11, 30, 32].
Advecting velocity components with momenta (rather than the opposite) bene�ts the accu-
racy of incompressible-�ow solvers. In particular, linearly extrapolated �V∗n+1=2 assures that
the advecting �ow satis�es discrete mass continuity equation (2) to round-o� error, and that
the �rst-order truncation error terms proportional to @ �V∗=@t vanish; cf. Reference [11] for
discussion.
Subgrid-scale forcings (SGS) included in R are evaluated explicitly and to the �rst-order.

This is justi�ed because they enter the equations of motion only as a consequence of a
subgrid-scale turbulence model, already as ∼O(	x2) corrections. Technically, this eliminates
the need for predicting SGSn+1 in Rn+1 on the rhs of (20), as SGS( n+1)=SGS( n)+O(	t).
Programming wise, the de�nition of the auxiliary �eld  ̃ is expanded as  ̃ ≡  n+0:5	t(Rn

inv +
2Rn

sgs), while accounting only for the resolved inviscid forcing Rinv in Rn+1 on the rhs of (20);
cf. Sections 3.5.4 and 4.2 in Reference [32] for discussion. The explicit �rst-order evaluation
of SGS forcings improves the e�cacy of calculations. When required however, it can be
extended to the trapezoidal integral, employed for the inviscid forcing Rinv, by means of an
outer iteration scheme [33].
Equation (20) represents an implicit system, because velocity components and pressure are

unknown at tn+1. It can be written compactly as

vi= v̂i − 0:5	t(G̃ �∇�′)i (21)

where v̂ denotes the explicit counterpart of (20), and the superscript n+ 1 has been dropped
as there is no ambiguity. On grids unstaggered with respect to all prognostic variables, (21)
can be manipulated locally to construct expressions for the solenoidal velocity components
that are subsequently substituted into discrete form of (2) to produce[

	t
�∗ �∇ • �∗G̃T(v̂ − 0:5	tG̃ �∇�′)

]
i
=0 (22)

i.e. an elliptic equation for renormalized pressure �′′[
	t
�∗ �∇ • �∗G̃T(v̂ − G̃ �∇�′′)

]
i
=0 (23)

where v̂−G̃ �∇�′′ ≡ �vs de�ned in (4); cf. Reference [13] for the complete development. Bound-
ary conditions imposed on �vs • n, subject to the integrability condition ∫

@� �∗ �vs • n d
=0,
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SAND DUNE EVOLUTION IN SEVERE WINDS 1237

imply the appropriate boundary conditions on G̃ �∇�′′•n [13, 14]. The resulting boundary value
problem is solved using a preconditioned generalized conjugate residual GCR(k) algorithm,
a nonsymmetric Krylov subspace solver akin to the popular generalized minimum residual
GMRES(k) scheme [34–38]. Given the updated pressure, and hence the updated solenoidal
velocity, the updated physical and contravariant velocity components are constructed from the
solenoidal velocities using transformations (6) and (4), respectively.

3.2. Sediment transport

The metric and transformation coe�cients embedded in (2) and (3) as well as the time
derivative of the transformed coordinates in (4) enter the solution procedure at tn+1 via Rn+1

term on the rhs of (20) as well as the coe�cients and boundary conditions of the elliptic
problem (23). They are supplied by integrating the advection–di�usion PDE (18) over the
double time step of the �uid model (e�ectively, from tn to tn+2) and then centering h and
@h=@t at tn+1; the results were found insensitive to variations in time stepping. Consistent with
the �uid model, the sediment-transport model (18) is integrated explicitly to O(	t2), using the
NFT scheme

hn+2
j =

Gxy
n

Gxy
n+2

Aj(h̃; �U∗n; 2	t) (24)

Here, Aj refers to a nonoscillatory horizontal-advection operator,‖ and h̃≡ hn+2	tL(Kn; hn),
with L symbolizing the generalized Laplacian on the rhs of (18), for all horizontal grid points
j=(i; j). Integrating (18) to �rst order su�ces for a second-order accuracy of the �uid model.
Due to discrete truncation, casting the saltation �ux in (11) as an advective �ux in (18), via

(17), can violate the boundedness of the resulting Courant number, locally as h ↘ 0 reach-
ing the upper limit of nonerodible substrate; cf. discussion following (17). The latter admits
negative values of h, even with a sign-preserving advection scheme employed in (24).∗∗ As
h becomes negative, the local Courant numbers can amplify, e�ecting ultimately in computa-
tional instability of the sediment motion model. A number of �nite-di�erence approximations
to (17) may be conceived to address this subtle stability issue. Here, we adopt a general
approach applicable with any transport scheme employed in (24). First, we evaluate (17) at
the cell walls straightforwardly, with disregard to the stability issue; for instance, in the spirit
of standard centred approximations

UXi+1=2; j=
1
�s

qxi+1=2; j + qxi; j
hi+1=2; j + hi; j

(25)

where only a Cartesian case is highlighted for illustration, so that qx refers to the x component
of the saltation �ux. Second, to prevent negative h, we limit advective �uxes in (24) using the
multidimensional �ux-limiter—Equation (10) in Section 3b of Reference [39], a special case
of general �ux-corrected approach [40]—that assures nonnegative h̃ in (24), consistent with
physical character of (18). Notably, there is no need to limit the �uxes for dunes evolving on a

‖The �rst-order-accurate MPDATA option, viz. the donor-cell scheme, has been used in this study.
∗∗Recall that MPDATA schemes are sign-preserving given properly bounded Courant numbers; cf. Reference [11]
for discussion.
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1238 P. ORTIZ AND P. K. SMOLARKIEWICZ

substantial erodible bed. Consequently, the magnitude of undershoots spurious for nonerodible
beds may be assessed a posteriori from the erodible-bed experiments, e.g. compare Figures 2
and 4 discussed in Section 4.2.

4. NUMERICAL SIMULATIONS

4.1. Design of experiments

We consider a neutrally strati�ed, nonrotating Boussinesq atmosphere with uniform ambi-
ent wind ve=(11; 0; 0) m s−1; and specify a Cartesian model domain Lx × Ly × Lz=340 ×
180× 40 m3, a compromise between the requirements of the �ow resolution and the proces-
sor array distribution of massively parallel computations. For the lower boundary at t=0,
we select a cosine sandpile of height ho=7:5 m and the half-width a=50 m, centred at
(xo; yo)= (Lx=3; Ly=2)

h(x; t=0)=

⎧⎨
⎩

ho cos2
(�r
2a

)
+ hb if r=a61

hb if r=a¿1
(26)

where r ≡
√
(x − xo)2 + (y − yo)2. In (26), hb denotes the thickness of the sand layer under-

neath the pile (bed), selected either 0 or 5 m in the experiments discussed here.
The key premise of this study is the ‘severe wind scenario’ that shrinks the gap between the

time scales characteristic of planetary boundary layer �ows O(103) s and sand dune evolution
O(106) s. Here, this is realized by rescaling the empirical coe�cient C=5:5 in (12) by the
factor of 1440 (minutes per day).†† This is expected to have a similar impact on the solution
as reducing the gravity (e.g. via posing the problem on a tenfold smaller planet), increasing
the �uid density (e.g. from air to water), or amplifying the ambient wind ten times. The latter
is computationally most stringent, as it severely limits the temporal integration increment 	t.
With the rescaled saltation �ux, the model equations are integrated over several characteristic
times T =103 s, each corresponding to ∼ 30 advection time scales Lx=ue. The equations are
solved on a regular mesh (in the transformed space) consisting of 171× 91× 41 grid points
with 	t=0:05 s. For the upper boundary the rigid lid is assumed, whereas lateral boundaries
incorporate open and periodic boundary conditions in the streamwise and spanwise directions,
respectively. The initial condition assumes the potential �ow.
The remaining simulation parameters are as follows. The surface drag coe�cient in the

Smagorinsky-type turbulence subgrid-scale model [17] is CD =0:01; the spatial and tempo-
ral scales that enter the avalanche �ux via (15) are selected as �=0:25 min(	x; 	y) and
�= 	t.‡‡ The friction velocity u∗ is evaluated from the logarithmic law

u∗=�
(v − v • n)|z	
ln(z	=z0)

(27)

††After Lettau and Lettau [23], C =5:5 corresponding to the standard grain size 0:25×10−3 m is typically assumed
in the literature [2, 5, 7].

‡‡The choice of the avalanche scales � and � compromises our own observations, cf. Figure 1, and numerical
stability arguments; our measurements indicate � ∈ [0:3; 3] m, and �=�≈ 0:3 m s−1.
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Figure 2. Evolution of a barchan dune; surface shape.

where z	 is the distance between the surface and the adjacent model level, cf. Reference [7],
and z0 is an equivalent roughness length (accounting for the �ow-to-grains momentum transfer)
taken as zo=0:001 m, and �=0:41 is the von Karman constant. The sediment transport
parameters are: �m =2650 kg=m

3 for the density of quartz, �=0 for the porosity; and the
horizontal threshold friction velocity is u�0 = 0:22 m s−1, corresponding to the the standard
grain size 0:25× 10−3 m [23].

4.2. Results

The development of an isolated barchan dune placed on a nonerodible bed is a canonical
problem in the study of evolutionary sand dune dynamics [5, 7, 21, 24] and, as mentioned in
Section 1, still eludes complete understanding. Figure 2 displays the transformation of the
initial sandpile into a barchan dune over 72min of our model simulation, at 24min intervals;
whereas Figure 3 shows the developed boundary layer �ow (isolines of vertical velocity and
�ow vectors), in the central vertical plane and at the lower surface, respectively, superimposed
with the dune altitude pro�le, at 84min of the simulated time. The apparent break of the
solution symmetry is attributed to the accumulation of round-o� error over O(105) time steps,
accentuated by the nonlinearity of the atmosphere=dune coupling.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1229–1246



1240 P. ORTIZ AND P. K. SMOLARKIEWICZ

Figure 3. Vertical velocity in the central xz plane and at the surface, at 84min of simulated time. The
superimposed isolines of the surface height are plotted with contour interval 0:1ho.

The highlighted results fall in the range obtained in other computational studies. For in-
stance, our average propagation speed 0.8m/mn is, after rescaling while accounting for more
standard porosity � = 0:5, roughly half of that reported in Reference [7] and close to value
quoted in Reference [5]. Furthermore, it is on the order of the values measured for small
barchan dunes in Reference [24]. Another example is the length of horns after shape stabi-
lization, equal to about 5–6 dune heights in our experiments, compared to 9 heights measured
in the Arequipa region (Southern Peru) [24]. Since in all studies there are discrepancies in the
initial, boundary, and ambient conditions, the overall agreement of the results is encouraging.
Together, Figures 2 and 3 demonstrate that the simulated dune is de�ned always over

compact support, free of sand residual trailing on the windward side. This is di�erent from
the results discussed in the literature that report unphysical sand deposition at the windward
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Figure 4. Evolution of a barchan dune with a sand bed beneath; surface shape.

foot of the dune. This e�ect is often attributed to the saturation model (12). The authors [5]
(see their Section 3.2) argue that the incompressible mass continuity equation inevitably leads
to the positive @h=@t at the windward side. Since our saltation model is, in essence, the same
as those used in earlier works, we infer that our successful prediction is related to the full
coupling of both phases of the two-�uid model. In particular, the time dependency of our
mass continuity equation (5), augments the arguments of Weng et al. [5] by incorporating
the additional term ∝ @h=@t that counterbalances the tendency for the negative horizontal
divergence on the windward side of the dune. E�ectively, this makes problem (18) implicit
in @h=@t, with the saturation �ux depending not only on h but also on its time derivative.
Figures 4 and 5 display solutions equivalent to those in Figures 2 and 3, except for the

5 m deep erodible bed incorporated underneath the initial sand pile. The principal dune
evolves similarly to the nonerodible-bed case, with apparent di�erences in the lee re�ect-
ing the saltation-�ux response to the separated wake �ow. A closer examination of the results
reveals that there is also a subtle di�erence on the windward side. The solution in Figures 4
and 5 evinces a sand deposition gently trailing along the symmetry axis upwind of the
dune, with descending slopes at the lateral sides of the dune. This low amplitude large-scale
waviness of the surface pro�le is consistent with the simulated boundary layer �ow. From
(11), (12), and (27), it follows that @h=@t ∼ − @u=@x. As the incoming �ow decelerates
in response to surface friction, @h=@t¿0 forming an ascending slope. As �ow trajectories
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Figure 5. Barchan dune with a sand bed: vertical velocity in the central xz plane and at the surface at
84 min of simulated time.

approach the dune, de�ect to the sides, and the surface wind accelerates, @h=@t¡0 thus form-
ing a descending slope. These weak e�ects are anticipated to be sensitive to the assumed
initial wind pro�le as well as the in�ow and lateral boundary conditions. In other words, if
they are judged spurious then they call for more realistic setups of the numerical experiment,
rather than indicating an inadequacy of either a sediment-transport or �uid model per se.

5. CONCLUDING REMARKS

Predicting sediment transport and bed evolution in severe wind conditions depends on
accurate prediction of �ow past a complex boundary evolving with the �ow itself. The

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1229–1246



SAND DUNE EVOLUTION IN SEVERE WINDS 1243

geometrical complexity of the evolving interfaces—which either accommodate dynamically to
the external=internal boundaries of the domain, or convolute in response to internal �ows—is
per se a challenge to numerical modelling. In this paper, we have developed a variant of
the nonhydrostatic model EULAG that couples the atmospheric �ow with a lower boundary
evolving in response to the sand saltation. The key prerequisite facilitating this development
is the use of a time-dependent curvilinear coordinate transformation that accommodates rapid
changes of the boundary shape. The nonoscillatory forward-in-time numerical technology of
EULAG enables novel numerical designs that improve the accuracy, stability, and robustness
of the traditional saltation models that govern the evolution of dunes.
The key premise of our development is the ‘severe wind scenario’ that shrinks the gap

between the time scales characteristic of planetary boundary layer �ows and sand dune evo-
lution by three orders of magnitude. Here, it is realized by rescaling the empirical coef-
�cient C in the saturation model (12) by a factor of 1440 (minutes per day). Arguably,
this has a similar impact on the solution as reducing the gravity (e.g. via posing the prob-
lem on a tenfold smaller planet), increasing the �uid density (e.g. from air to water), or
amplifying the ambient wind ten times. The latter is computationally least attractive, as it
severely limits the temporal integration increment. With the rescaled saltation �ux, the two-
phase model equations can be integrated consistently and e�ciently, while simplifying the
programming e�orts associated with the phase coupling. The resulting model dispenses with
quasi-steady approximation and scale-separation assumption, thereby enabling numerical in-
vestigations of sand dune evolutions from �rst principles, in the spirit of idealized laboratory
studies.
To simplify and focus the presentation of the two-phase model and associated computa-

tional procedures, here, we only considered a shallow �ow of thermally homogeneous plan-
etary boundary layer, adopting the classical incompressible Boussinesq approximation in the
governing �uid equations. The latter invokes only a small portion of the model capabili-
ties. The nonhydrostatic anelastic model EULAG—the mathematical=numerical foundation of
the present two-phase system—has been proven successful in simulating rotating, strati�ed,
thermally forced �ows in complex geometries, on scales from micro to planetary [30]. Conse-
quently, the developments presented in this paper extend readily to a broad range of sediment
transport problems on scales from micro to planetary.

APPENDIX A

The dependence of the threshold friction velocity, ut in (12), on the landform slope has
been addressed for slab symmetry [25]. In 3D applications, it is important to account for the
nonalignment of the local maximum slope and wind direction. Following Reference [26], we
proceed assuming the equality of tractive force and friction as well as the independence of
the drag coe�cient on the slope magnitude.
Consider a grain particle at a point on the sloped surface, and the forces of gravity W and

the �uid drag D acting on it. Decomposing W into the normal |W| cos � and the tangential
|W| sin � in the direction of the maximal local slope, the tractive force F is the resultant
of D and |W| sin �. The critical condition for the onset of motion is traction equal friction,
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i.e. |F|= |W| cos � · tan �, where � is the angle of friction. The resultant force

F=
(

−|W| sin �
|∇h|

@h
@x
+ |D| u|v|

)
i

+
(

−|W| sin �
|∇h|

@h
@y
+ |D| v

|v|
)
j+

(
−|W| sin �

|∇h| + |D| w|v|
)
k (A1)

comprises components u; v; w of the �ow velocity v, tangential in the vicinity of surface due
to the impermeability boundary condition v · n=0| �z= 0 imposed.
The critical condition for a horizontal bed (�=0)

|D0|= |W| tan � (A2)

relates the particle weight to the critical drag for �at surface, D0, and the friction angle;
whereas the assumption of the drag coe�cient independence on the slope results in

D
D0
=

u2t
u2t0

(A3)

Substituting (A2) and (A3) in (A1) leads to the quartic equation for the normalized friction
threshold velocity ut=ut0

(
u2t
u2t0

· u
|v| − sin �

tan �
@h
@x

1
|∇h|

)2
+

(
u2t
u2t0

· v
|v| − sin �

tan �
@h
@y

1
|∇h|

)2

+
(

u2t
u2t0

· w
|v| − sin �

tan �
1

|∇h|
)2
= cos2 � (A4)

Note that |∇h|¿0 and tan �¿0, always and everywhere. Furthermore, all coe�cients in (A4)
are bounded when |v| ↘ 0. Solving (A4) for u2t =u

2
t0 leads to (13), where all terms dependent

on �ow direction collapse into cos �.
To appreciate the importance of the slope correction, consider the asymptotic limits, within

the 06�6� and 06�6� bounds. For � �=0 and �=0, the multiplicative factor in (13) varies
between 1 (for �=0) and 1.7 (for �= �). For � �=0 and 0¡�¡�=2, the correction factor
decreases for increasing � nearly to 1:0 for gentle slopes, and nearly to zero when the slope
approaches the critical and �≈�=2. For � �=0 and �=�=2, the factor varies from 1:0 for �=0
to 0.1 for �≈ �. When � �=0 and �=26�6�, the correction factor is smaller than unity and
decreases with increasing �, while for �≈ 0 goes to nearly zero.
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